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Computing the Kubo formula for large systems

Tsuneyoshi Nakayama and Hiroyuki Shima
Department of Applied Physics, Hokkaido University, Sapporo 060-8628, Japan

~Received 20 February 1998!

A computational method, in which a system is mapped to the time-dependent Schro¨dinger equation driven
by a periodic external force, is formulated for computing linear response functions of quantum systems. This
method, which scales linearly with the system sizeN, includes computing the Kubo-Greenwood formula for
the dynamic conductivities of systems described by large-scale Hamiltonian matrices. In addition, a scaling
approach, derived from this algorithm, is presented to determine the exponent of the conductivitys(v)}vd

near the metal-insulator quantum transition with high speed and accuracy.@S1063-651X~98!10709-2#

PACS number~s!: 02.70.2c, 71.10.Fd, 85.30.Vw, 72.15.2v
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I. INTRODUCTION

Numerical approaches for large-scale systems not ac
sible by analytic methods have become very useful in rec
years as the performance of vector and parallel supercom
ers has improved. The calculations of linear response fu
tions are especially important to gain insight into the d
namic properties of large-scale systems. Calculations
linear response functions for quantum systems describe
N3N Hamiltonian matrices normally require the evaluati
of all eigenvalues and corresponding eigenvectors. As
sizes of matrices become large, standard diagonalization
tines require a large amount of the CPU time proportiona
O(N3) as well as memory space proportional toO(N2).
They remain limited to systems of modest size because
the high computational cost.

So far, many efficient algorithms suitable for the calcu
tion of linear response functions, such as the Kub
Greenwood formula for the ac conductivity, have been
veloped to overcome these difficulties. These inclu
methods based on the continued fraction technique@1#, the
recursion method@2#, the full-diagonalization technique us
ing the Lanczos method@3#, the Chebyshev polynomial ex
pansion @4#, the conjugated gradient method@5#, and the
method for direct integration of the time-dependent Sch¨-
dinger equation@6#. These are powerful for computing linea
response functions of large systems and have been appli
various problems.

Recently, a method often called the forced oscilla
method~FOM!, addressing classical systems, has been
veloped to efficiently compute spectral densities of sta
eigenvalues, and their eigenvectors of systems describe
very large matrices@7,8#. The method is based on the prin
ciple that a linear mechanical system, when driven by a
riodic external force of frequencyV, will respond with large
amplitude in those eigenmodes close to this frequency.
characteristics of the method are its simplicity, speed,
memory efficiency. The advantages compared to exis
methods are that~i! it requires memory space of the order
N for sparse matrices,~ii ! it is possible to compute the spe
tral density of states within an arbitrary range of eigenval
and with a given resolution,~iii ! one can calculate quite ac
curately the selected eigenvalue and its eigenvector
judge the accuracy, and~iv! the CPU time is linearly propor
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tional to the system sizeN for calculating the density of
states~DOS! and toN2 for extracting eigenvalues and the
eigenvectors. The particular advantages of the FOM lie in
being easily vectorized and parallelized for implementat
in an array-processing modern supercomputer. This is du
the fact that the time-consuming part in computations is
solve equations of motion and the program is easily o
mized. It is possible to treat matrices by this method hav
a degreeN'107 or more by using supercomputers with
Gbyte memory space@9#.

The algorithm has been extended to calculate the resp
functions @10# and successfully applied to the analysis
S(q,v) or the Raman scattering intensityI (v) of large-scale
classicalsystems@11–13#. In this paper we develop the a
gorithm to calculate the linear response functions ofquantum
systems described by large-scale Hamiltonian matrices.
method is broadly applicable and may be of interest in
variety of physical systems.

The outline of this paper is as follows. Section II d
scribes the mapping of quantum systems to first-order dif
ential equations driven by a periodic external force. The c
responding relationship is given between the imaginary p
of the generalized susceptibility and the ‘‘resonance’’ fun
tion gained by a periodic external force with the frequen
V. In Sec. III we show that the Kubo-Greenwood formula f
the dynamic~ac! conductivity is related to the resonanc
function introduced in Sec. II. It will be emphasized that t
method is valid for computing not only the longitudinal co
ductivity but also the transverse one. Section IV demo
strates the efficiency of the method by comparing the ca
lated results with the analytic solution for the syste
described by large-scale Hamiltonian matrices in addition
the calculations of ac conductivities of the three-dimensio
~3D! Anderson model close to the metal-insulator quant
transition. Section V presents the finite-time scaling a
proach, derived from this method, to determine the expon
of the ac conductivitys(v)}vd at the metal-insulator tran
sition. This approach is especially powerful to obtain t
precise value of the exponentd with high speed and accu
racy. A summary and discussion are given in Sec. VI.

II. LINEAR RESPONSE FUNCTION
AND RESONANCE FUNCTION

Consider a quantum system described by a set of ma
elements$Ki j %, whose general Hamiltonian is given by
3984 © 1998 The American Physical Society
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PRE 58 3985COMPUTING THE KUBO FORMULA FOR LARGE SYSTEMS
Ĥ5(
i , j

Ki j u i &^ j u ~ i , j 51,2, . . . ,N!, ~1!

where ^ju is the bra vector in thesite notation given by
^ j u5(0,0,...,1,...,0). The ket vector is defined as well. Sin
the set$ui&% satisfies the closure relation( i u i &^ i u51, an arbi-
trary state is expanded as

uC~ t !&5(
i

ai~ t !u i &. ~2!

We impose a small perturbationV̂ to the system expresse
by

V̂52 1
2 (

a
x̂a~ f 0

ae2 ivt1c.c.!, ~3!

where x̂a is the a component of thegeneralizeddisplace-
ment andf 0

a is the corresponding generalized force. c.c.
dicates a complex conjugate. In the spectral representa
this is written in the form

V̂5(
a

(
i , j

u i &Vi j
a~ t !^ j u

52 1
2 (

a
(
i , j

~ u i &xi j
a ^ j u!~ f 0

ae2 ivt1c.c.!. ~4!

Here we have definedVi j
a (t)5^ i uV̂au j & and xi j

a 5^ i ux̂au j &.
Substituting Eqs.~1! and ~3! into the Schro¨dinger equation
for uC(t)& and multiplying by^ku from the left, one has the
inhomogeneous coupled linear differential equation

i\
dai~ t !

dt
2(

j
Ki j aj~ t !5(

a
(

j
Vi j

a~ t !aj~ t !. ~5!

For a small perturbation, the time-dependent first-order p
turbation theory is applicable by puttingai(t)5ai

(0)(t)
1(aaia

(1)(t) into Eq.~5!. The zeroth-order equation becom

i\
dai

~0!~ t !

dt
2(

j
Ki j aj

~0!~ t !50, ~6!

while the first-order term yields

i\
daia

~1!~ t !

dt
2(

j
Ki j aj a

~1!~ t !5(
j

Vi j
a aj

~0!~ t !. ~7!

By substituting Eq.~4! into Eq. ~7!, one has the first-orde
linear differential equation with the periodic external forc

i\
daia

~1!~ t !

dt
2(

j
Ki j aj a

~1!~ t !

52
\

2
~Fiae2 ivt1Fia* eivt!e2 ivl0t. ~8!

Here
e

-
n,

r-

Fia5(
j

f 0
a

\
xi j

a ej~vl0!, Fia* 5(
j

f 0
a*

\
xi j

a ej~vl0!,

~9!

whereej (vl0)[^ j uvl0& is the j th element of the initial ei-
genvector belonging to the eigenvaluevl0 of the matrix
$Ki j % @see Eq.~6!#. We have used in Eq.~7! the definition
given by

aj
~0!~ t !5ej~vl0!e2 ivl0t.

The functionaia
(1)(t) is expanded by a set of eigenvecto

$ei(vl)% as

aia
~1!~ t !5(

l
jl

a~ t !ei~vl!, ~10!

wherejl
a(t) is the amplitude of the model. From Eq.~8!

and using the orthogonal condition for eigenvecto
$ei(vl)%, one has the equation forjl

a(t),

i
djl

a~ t !

dt
2vljl

a~ t !52
1

2 H(
j

ej* ~vl!@F j ae2 i ~vl01v!t

1F j a* e2 i ~vl02v!t#J , ~11!

where the closure relation( jej (vl)ej* (vl8)5dll8 is used.
Imposing the initial conditionjl

a(0)50, the solution of Eq.
~11! yields

jl
a~ t !52

e2 ivlt

2 H(
j

ej* ~vl!

3FF j a

ei ~vl2vl02v!t21

vl2vl02v
1F j a*

ei ~vl2vl01v!t21

vl2vl01v G J .

~12!

The second term in the square brackets is negligible since
consider the case of zero temperature and treat the F
distribution function with the Fermi frequencyvF5EF /\ as
a step function. This implies thatvl.vF>vl0 , namely,
vl2vl0.0, implying that the contribution from the firs
term close toV5vl01v'vl is dominant.

Let us introduce the ‘‘resonance’’ function defined by

Eab~V,t !5(
i

aia
~1!~ t !* aib

~1!~ t !5(
l

jl
a~ t !* jl

b~ t !.

~13!

By substituting Eq.~12! into Eq. ~13!, one has

Eab~V,t !5(
l

H(
i

Fiaei* ~vl!J * H(
j

F j bej* ~vl!J
3

sin2$~vl2V!t/2%

~vl2V!2 , ~14!

whereV5vl01v. The orthogonality condition for eigen
vectors$ei(vl)% is used to derive Eq.~14!. The eigenvectors
contributing to the sum in Eq.~14! are those whose frequen
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3986 PRE 58TSUNEYOSHI NAKAYAMA AND HIROYUKI SHIMA
cies lie within about6(2p/t) of V, where t is the time
interval. Suppose that the following conditions are satisfi
according to Ref.@7#:

Vt@1, ~15!

4p

tDv
@1, ~16!

whereDv is the average spacing between the frequencie
adjacent eigenmodes. The first condition~15! means that
only eigenmodes in a narrow band of frequencies on
scale ofV contribute to the sum onl in Eq. ~14!. The second
one ~16! ensures that the number of such eigenmode
much larger than unity. Namely, the number of modes
frequency internalDv is of the order of 1/Dv and so the
number of modes that are within62p/t of V is 4p/tDv
@7#. The condition~16!, which implies that the resonanc
width DVR54p/t should be much larger than the avera
level spacingDv, is easily achieved for a system with
sufficiently large sizeN becauseDv for such a system be
comes very small. For a largeN, namely, with a smallDv,
the conditions~15! and ~16! are unified into the relation

1

V
!t!

4p

Dv
. ~17!

This condition requires that there should exist a suffici
number of eigenstates within the frequency rangeV to V
1DVR . We should note that, for the conditiont
@4p/Dv, the resonance factor in Eq.~14! is so sharp that
the resonance widthDVR is less than the spacingDv. This
condition for t is used to extract the pure eigenmode of t
initial state expressed byei(vl0) in Eq. ~9! in addition to the
optimization condition@8# ~see Appendix A!.

Taking a proper time intervalt satisfying the condition
~17!, Eq. ~14! gives

Eab~V,t !5
pt

2 (
l

H(
i

Fiaei* ~vl!J *

3H(
j

F j bej* ~vl!J d~vl2V!. ~18!

A straightforward calculation leads to the following repr
sentation, using the expression forFia introduced in Eq.~9!:

(
i

Fiaei* ~vl!5
f 0

a

\ (
i , j

xi j
a ej~vl0!ei* ~vl!

5
f 0

a

\ (
i , j

^vlu i &^ i ux̂au j &^ j uvl0&

5
f 0

a

\
^vlux̂auvl0&. ~19!

Substituting Eq.~19! into Eq. ~18! leads to
d

of

e

is
r

t

Eab~V,t !5
pt f 0

a* f 0
b

2\2 (
l

^vl0ux̂auvl&

3^vlux̂buvl0&d~vl2V!. ~20!

The generalized susceptibilityxab(v) is given by the Kubo
formula @14# under the generalized external force defined
Eq. ~3!,

xab~v!5
i

\ E
0

`

eivt^@ x̂a~ t !,x̂b~0!#&dt, ~21!

where angular brackets denote the thermal average.
imaginary part of the generalized susceptibility for thefixed
initial stateuvl0& is expressed by

xab9 ~v!5
p

\ (
l

@^vl0ux̂auvl&^vlux̂buvl0&d~vll02v!

2^vl0ux̂buvl&^vlux̂auvl0&d~vll01v!#, ~22!

where the definition isvll05vl2vl0 . The second term in
the square brackets obviously makes no contribution beca
vll0.0. By comparing Eq.~22! with the resonance function
Eab(V,t) given in Eq.~20!, one has the relation, by settin
f 0

a5 f 0
b51 without loss of generality,

xab9 ~v!5
2\Eab~V,t !

t
. ~23!

This relation is the key equation that relates the resona
function Eab(V,t) @Eq. ~13!# to the imaginary part of the
generalized susceptibilityxab9 (v).

III. COMPUTING THE KUBO-GREENWOOD FORMULA

A. Longitudinal dynamic conductivity

This section describes the relationship between the Ku
Greenwood formula for the ac conductivity and the res
nance function defined in Eq.~13! via the imaginary part of
the generalized susceptibilityxab9 (v). A small perturbation
due to the vector potentialA(t) to a electronic system is
expressed asĤ852 Ĵ•A(t), whereĴ is the current operator
Since the conductivity is defined as the response to the e
tric field E(t), the generalized conductivitySab(v) is re-
lated to the generalized susceptibilityxab(v) by the relation
Sab(v)5xab(v)/ ivLd, whereL is the linear size of ad-
dimensional system.

The generalized conductivity is expressed as@14#

Sab~v!5
ine2

mv
dab1

1

\vLd

3 lim
«→0

E
0

`

eivt2«t^@ Ĵa~ t !,Ĵb~0!#&dt, ~24!

whereĴa(t) is thea component of the current operator an
the angular brackets mean the thermal average. The first
represents the conductivity of a system of free electro
From this one can derive thelongitudinal component of the
ac conductivitys(v)[Re@Saa(v)# by settinga5b and x̂a
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PRE 58 3987COMPUTING THE KUBO FORMULA FOR LARGE SYSTEMS
5Ĵa in Eq. ~22!. Taking account of the Fermi distributio
function f (v), the longitudinal ac conductivitys~v! is ex-
pressed by the imaginary part of the generalized suscep
ity x9(v) as

s~v!5
2

vLd (
vl0

x9~v!@ f ~vl0!2 f ~vl01v!#

5
2

vLd (
vl05vF2v

vF

x9~v!, ~25!

where the spin freedom is taken into account and the de
tion of the Fermi frequency isvF5EF /\. The meaning of
(vl05vF2v

vF is the sum on the initial stateuvl0& at zero tem-

perature. Equation~25! can be shown to be equivalent to th
Kubo-Greenwood formula@14,16# ~see Appendix B!.

The explicit form of the longitudinal ac conductivity, ex
pressed by the resonance function given by Eq.~13!, be-
comes

s~v!5
4\

vtLd (
vl05vF2v

vF

E~V,t !, ~26!

where the timet satisfies the condition 1/V!t!4p/Dv.
This is the key relation for evaluating the ac conductiv
from the resonance functionE(V,t). We should emphasize
that the accuracy of the calculated results becomes bette
increasing the system sizeN since the average level spacin
Dv becomes smaller than the resonance widthDVR .

B. Transverse dynamic conductivity

It is straightforward to generalize the formula for the lo
gitudinal conductivity@Eq. ~26!# to the transverse ac condu
tivity sab(v). The resonance functionEab(V,t) is related
to the imaginary part of the generalized susceptibi
xab9 (v) via Eq.~23!. The use of Eqs.~23! and~25! gives the
expression for the transverse ac conductivity

sab~v!5
2

vLd (
vl05vF2v

vF

xab9 ~v!

5
4\

vtLd (
vl05vF2v

vF

Eab~V,t !. ~27!

The Onsager reciprocal relationsab(v)52sba(v) should
be satisfied in Eq.~27! by letting v→2v and i→2 i . This
comes from the relation for the generalized susceptibi
xab(v)5xba(v) @15#.

We have described in this section the method of comp
ing the longitudinal and the transverse ac conductivities
systems described by large-scale Hamiltonian matrices.
algorithm enables us to directly calculate conductivit
without making the temporal Fourier transform of the r
sponse function or calculating all of the intermediate sta
$ei(vl)% relevant to the formula~22!. This allows the calcu-
lation of the ac conductivities withO(N) computational
steps.
il-

i-

on

y

t-
r
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s
-
s

IV. IMPLEMENTATION OF THE ALGORITHM

A. Time development of the resonance function

The problem of calculating the resonance function in E
~23! is reduced to the numerical solution of the first-ord
coupled linear differential equations under a periodic ext
nal force expressed by Eq.~8!. By dividing the function
aia

(1)(t) in Eq. ~8! into a real partxi(t) and an imaginary par
yi(t), one has, in units of\51,

dxi~ t !

dt
2(

j
Ki j y j~ t !5

1

2
Fisin~Vt !, ~28!

dyi~ t !

dt
1(

j
Ki j xj~ t !5

1

2
Ficos~Vt !. ~29!

Here we have assumed, for simplicity, that the eleme
$Ki j % and$Fi% are real numbers. By discretizing timet with
a stept, these equations become

xi~n11!5xi~n!1(
j

tKi j yj~n!1
t

2
Fisin~Vnt!,

~30!

yi~n11!5yi~n!2(
j

tKi j xj~n11!

1
t

2
Ficos@~V~n11!t#, ~31!

wherexi(t) andyi(t) are the real and the imaginary parts
the i th elementaia

(1)(t) at time t5nt, in which the integern
represents the number of time steps.

It should be noted that the second and third terms on
right-hand side of Eq.~31! depend on the numbern11 of
time steps, namely, defined by theretardedfinite-difference
form, which is different from the standard Euler method d
fined by the advanced finite-difference method as used
Eq. ~30!. The choice in Eq.~31! makes the calculation, by
taking the time stept satisfying the conditionvmax t,2,
very efficient and accurate, as discovered by Williams a
Maris @7#.

We choset as t54p/DVR , whereDVR is a given reso-
lution. This ensures that the number of modes within
rangeV to V1DVR is much larger than unity. The detail
of the implementation of our algorithm are as follows.~i!
The initial set of vectors$xi(0)% and $yi(0)% to iterate Eqs.
~30! and ~31! is set to be zero.~ii ! We prepare the initial
states$ei(vl0)% belonging to the eigenfrequencyvl0 by ap-
plying the FOM described in Ref.@8#, taking a large time
interval satisfying the conditiont@4p/Dv or, equivalently,
Dv@DVR for Eqs.~30! and~31! ~see Appendix A!. ~iii ! By
taking the time intervalt as t54p/DVR (DVR@Dv), we
calculate the amplitudeaia

(1)(t) under the periodic externa
force with the frequencyV. We can finally obtain the reso
nance function using Eq.~13!. Note that the frequency
resolution can be determined and controlled by the ti
interval t.
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B. Tight-binding chain

In order to assess the efficiency of the algorithm follo
ing the procedure described in the preceding subsection
consider a 1D tight-binding Hamiltonian withN sites given
by

Ĥ5(
i

e i u i &^ i u2(
i , j

t i j u i &^ j u, ~32!

where we sete i52 andt i ,i 6151 for hopping terms betwee
nearest neighbors. The matrix elements for the current op
tor Ĵ5eŷ are obtained from the Heisenberg equation of m
tion asJj , j 615^ j uĴu j 11&57 ie/\ by taking a lattice spac
ing a51. We have calculated the resonance function defi
by Eq. ~13! for this system by settinga5b under the fixed
boundary condition. We note that for the system consist
of a regular chain without scattering of waves, the Ku
formula is not applicable because the system cannot re
thermal equilibrium. However, though rather artificial, it
possible to calculate, in a very formal manner, the dyna
conductivity of the system both analytically and numerica
in order to test the efficiency of the algorithm.

Figure 1 represents the comparison of numerical res
~solid circles! with the analytic solution~solid line! for a 1D
chain with N510 000 on a double logarithmic scale. Th
system of units used ise5\51. For these calculations, w
have chosen the time step ast52p/20V and the resonanc
width in Eq. ~14! as DVR54p/t with t54p3100. This
means that there are about 25 modes within the reson
width DVR . In order to prepare the initial eigenfunctio
$ei(vl0)% we have performed calculations under the con
tion Dv'DVR and taken the number of iterationsp'10.
This choice of parameters makes the deviationd defined in
Appendix A take the valued'1027. The analytic solution
for this system is given by the solid line, whose explicit for
is omitted here. We see from Fig. 1 that the calculated res
agree fairly well with the analytic result over one order

FIG. 1. ac conductivitiess~v! of the 1D tight-binding chain
with the system sizeN510 000. The resonance widthDVR is taken
to beDVR50.01 in the frequency rangev50.02– 0.4 in the system
of units given in the text. The solid line indicates the analytic so
tion showing thev22 dependence.
-
e

ra-
-

d

g

ch

ic

ts

ce

-

lts

magnitude in frequency. Thev22 frequency dependence i
the conventional Drude-like behavior. We emphasize ag
that the local equilibrium is achieved by sufficiently larg
scattering rates due to randomness and excitations suc
phonons in metals, namely, the assumption that local e
librium is valid outside the mean scattering lengthl s . In the
case of perfect metals, the scattering length becomes la
than the system sizeL, resulting in the inapplicability of the
Kubo-Greenwood formula.

In order to demonstrate theO(N) scaling of our method,
ac conductivities have been computed by varying the sys
sizeN for the tight-binding chain given by Eq.~32!. In these
calculations, we have taken the same resonance widthDVR
50.01 for the fixed frequencyv50.2. Figure 2 shows the
scaling of CPU times with the system sizesN of 1000, 3000,
10 000, and 30 000, respectively. The linear scaling toN is
evident from these calculated data.

C. Three-dimensional disordered system

We apply the algorithm to the calculation of the ac co
ductivities of the 3D Anderson model of noninteracting ele
trons in a random potential, in which the on-site potent
$e i% in Eq. ~32! is distributed uniformly between2W/2 and
W/2. The critical widthW is known to beWC516.5 @17–
19#. Thev1/3 dependence ofs~v! at the metal-insulator tran
sition was predicted by Wegner@20# using the single-
parameter scaling hypothesis, but this dependence was
verified numerically until the work by Lambrianides an
Shore@21#. They evaluated the Kubo-Greenwood formula
directly calculating eigenvectors of the order of 105 for sys-
tem sizesL56 – 14 and by pulling out of the integral th
densities of statesD(vl0) andD(vl01v). We do not need
to do so to calculate the ac conductivities since the inform
tion on the DOS is automatically involved in our algorith
through Eq.~14!. We plot the calculated DOS for the syste
size N5303 in Fig. 3. These data are obtained by setti
Fi5eif i in Eq. ~8!, wheref i is a random quantity. This is

-

FIG. 2. CPU times on the Ultra-SPARC for various system si
N. Calculations on ac conductivities have been performed for tig
binding chains with the resonance widthDVR50.01 at the fixed
frequencyv50.2 in the system of units given in the text.
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PRE 58 3989COMPUTING THE KUBO FORMULA FOR LARGE SYSTEMS
the same scheme presented by Williams and Maris@7# to
calculate the DOS, which is particularly effective when o
needs the DOS at an arbitrary frequency range for syst
described by large-scale Hamiltonian matrices in anO(N)
fashion. We consider the case of the critical widthWC and
choose the Fermi energyEF5\vF in the center of the flat
band ~see Fig. 3!, for which the mobility edgev05vF .
Figure 4 shows the calculated results for 3D systems w
N5303 on 20 samples with various distributions of rando
potential$e i%. The parameters taken aret54p3100 andt
52p/20V ~or 1.9/vmax). From Fig. 4 the exponentd is es-
timated to bed50.3360.04 by averaging over 20 sample
The error is within 12%.

V. FINITE-TIME SCALING OF THE ac CONDUCTIVITY
NEAR THE QUANTUM PHASE TRANSITION

We consider the frequency dependence of the ac con
tivity near the mobility edgev0 , in particular, the case in
which the ac conductivitys~v! follows the power-law de-
pendencevd, where the frequencyv is measured fromv0 .

FIG. 3. Spectral density of states for the 3D Anderson mode
noninteracting electrons in a uniformly distributed random poten
with W5Wc in addition to the regular caseW50. The resonance
width is taken asVR50.2 for the system sizeN5303. The data are
averaged over 10 samples.

FIG. 4. ac conductivitiess~v! for the 3D Anderson model o
interacting electrons in a uniformly distributed random potent
The system size isN5303, for which the resonance width is take
asDVR50.01 in the system of units given in the text. The data
averaged over 20 samples. The solid line is drawn by a le
squares fit and each of the error bars is defined as a standard d
tion.
s

h

c-

These problems appear in the investigation of quantum ph
transitions, where the problem is how to obtain the prec
value of the exponentd. We provide in this section an effi
cient method based on the finite-time scaling approach
determine the exponentd.

The explicit form of the resonance functionE(V,t) with
the definitionV5vl01v is given by Eq.~14! as

E~V,t !5
1

\ E dvlD~vl!z^vlux̂uvl0& z2
sin2$~vl2V!t/2%

~vl2V!2 ,

~33!

where the density of statesD(vl) is introduced by the defi-
nition (vl

5Ld*d(\vl)D(vl). We assume that the longi
tudinal ac conductivitys~v! obeys the power law close t
the mobility edgev0 as

s~v!}vd ~34!

for 0,v!vF and that the DOS close tov0 is nearly con-
stant in the center of the band as shown in Fig. 3. Note
v05vF for the critical distributionWC516.5 @17–19#. Un-
der these conditions, Eq.~33! should be, for a sufficiently
large time intervalt,

E~V,t !/t}E dvl~vl2vl0!dd~vl2V!}vd, ~35!

where the definitionV5vl01v is used. For a short time
interval (V2vl)t!1, the sinclike function in Eq.~33! be-
comes wider than the bandwidth. This yields

E~V,t !/t}t2d.

From these two extreme cases, the scaling form of the re
nance function or, equivalently, the ac conductivity becom
as in the case of obtaining the exponent of the spectral D
at the band edge of the6J Ising spin-glass model propose
by Hukushima and Nemoto@22#,

E~v,t !/t}t2dG~vt !, ~36!

where the asymptotic form ofG(z) should be

G~z!5 H zd, z@1
const, 0,z!1. ~37!

We apply this scheme to the 3D Anderson model of no
interacting electrons in a uniformly distributed random p
tential studied in Sec. IV. Figure 5 presents the results
s~v! for the systemW5WC with N5203, taking the time
interval t54p34n (n51 – 8). The corresponding reso
nance widths becomeDVR51/4n, wheren ranges from 1 to
8. We see from Fig. 5 that the calculated results approac
v1/3 dependence with increasing the time intervalt. Figure 6
plots the scaling functionG(z) (z@1) defined in Eq.~36!.
The ordinate represents the quantityG(z) and the abscissa
depends on the variablez. The data forn56 – 8 collapse
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onto a single line over one order of frequency variatio
From Fig. 5 the exponentd is estimated asd50.337
60.013, namely, the error is within 4%. We emphasize t
the scaling approach presented here has been performe
taking a limited number of initial eigenvectors$ej (vl0)% and
by varying the time intervalt. This enables the computatio
of the precise exponentd with significantly less computa
tional effort, in fact, several times faster compared to
effort for evaluating the exponentd in Fig. 4. The straight
line is for v1/3, indicating fairly good agreement with th
calculated results. We have demonstrated in this section
the accuracy has been significantly improved by the use
the finite-time scaling approach.

VI. CONCLUSIONS

We have proposed a method for computing linear
sponse functions for quantum systems described by la
scale Hamiltonian matrices. The method is based on solv
the Schro¨dinger equation numerically in the presence o
generalized external force. This method enables the effic
computation of linear response functions withO(N) compu-
tational steps. Simple examples have been considered to
firm the reliability of the method. We have furthermore pr
sented the finite-time scaling method for computing
exponent of the frequency dependences(v)}vd near the

FIG. 5. Calculated ac conductivities taking various time int
vals t54p34n, for whichn ranges fromn51 to 8. These choices
make the resonance widths range fromDVR50.25 to 0.031 25. The
system size isN5203.

FIG. 6. Finite-time scaling functionG(z) introduced in Eq.~36!.
The data forn56 – 8 presented in Fig. 5 (z@1) are plotted. The
straight line showing thev1/3 dependence is only a guide to the ey
.
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metal-insulator Anderson transition. This method is es
cially powerful for evaluating the precise value of the exp
nent d with high speed and accuracy. Although we ha
examined only conductivity problems, the present metho
rather general, so it should be applicable for calculating v
ous types of linear response functions. This issue is es
cially relevant in quantum systems in a variety of physic
contexts.
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APPENDIX A

This appendix presents the procedure to extract the in
eigenfunction$ei(vl0)% of the unperturbed system belong
ing to the eigenfrequencyvl0 , necessary to give the extern
force defined in Eq.~9! following the FOM@7,8#. A quantum
system described by a Hermitian matrix$Ki j % has a set of
eigenfunctions$ei(vl)% defined by

vlei~vl!5(
j

Ki j ej~vl!, ~A1!

where we use a system of units of\51. Hereafter we as-
sume all matrix elements described by$Ki j % to be real and
symmetric, or, equivalently, all eigenvalues and their eig
functions$ei(vl)% to be real numbers. The extension to t
case of complex numbers is straightforward.

The eigenfunction$ei(vl)% of the unperturbed system i
obtained by numerically solving the Schro¨dinger equation
given in Eq.~6! by the following procedure. We impose th
external forceFiexp(2iVt) on each sitei in Eq. ~6!. HereFi
should be chosen as

Fi5F0cos~f i !, ~A2!

where f i is a random quantity taking a value within th
range 0<f i<2p and F0 is a constant. Note that this defi
nition of Fi is different from that in Eq.~9! for the perturbed
system. We first drive the system for a time intervalT, under
the initial condition$ai

(0)(t50)50%, after which the ampli-
tude at the sitei becomesai

(0,1)(t). One sees, using Eq.~6!,
that this amplitude can be written as the sum of norm
modes$ei(vl)% after the time intervalT,

ai
~0,1!~T!522i(

l
Flh~V,vl ,T!ei~vl!

3expS 2 i
V1vl

2
TD , ~A3!

where

-
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Fl5(
j

F jej~vl!

~A4!

h~V,vl ,T!5
sin$~V2vl!T/2%

V2vl
. ~A4!

As a next step, the amplitude of the external force in E
~A2! applied to the sitei is replaced by the new externa
force Fi

(1) exp(2iVt) with Fi
(1)5ai

(0,1)(T). We drive again
the system for the time intervalT under the new externa
force starting with all zero amplitudes. Afterp iterations of
this process we have

ai
~0,p!~T!5~22i !p(

l
Flhp~V,vl ,T!ei~vl!

3expS 2 i
V1vl

2
pTD . ~A5!

This equation indicates that one model1 close toV is domi-
nantly excited after a sufficient number of iterations. This
the mode for which the absolute magnitude of theh function
in Eq. ~A4! has the largest value. Thus, for a sufficien
largep of around 10, we obtain

ai
~0,p!~T!>Cei~vl1

!exp~2 ipvl1
T!, ~A6!

whereC is a constant. In actual calculations, we discret
time t with a stepnt and drive Eqs.~30! and ~31! with the
external forceFi

(p)exp(2iVt). Note that we use the modifie
Euler method defined by the retarded finite-difference fo
in Eq. ~31!, which makes the calculations very efficient a
accurate, as found by Williams and Maris@7#.

In order to estimate the monochromaticity of the exit
mode in Eq.~A6! we introduce the quantityd i @8# defined by

d i5bi2ṽci , ~A7!

wherei denotes the site and

bi5(
j

Ki j aj
~0,p!~T!, ci5ai

~0,p!~T!. ~A8!

We see from Eq.~A7! that if ai
(0,p)(T) is equal to the eigen

functionei(vl) andṽ5vl , d i vanishes for anyi. When the
excited pattern$ai

(0,p)(T)% consists of a few modes with
eigenfrequencies close to the external frequencyV, d i be-
comes small but finite.

The normalized sum of the deviationd2 defined below
expresses the degree of convergence@8#

d25
( i ud i u2

( i ubi u2
. ~A9!
.

s

e

We choose the quantityṽ as the deviationd2 to be mini-
mized. By differentiating Eq.~A9! with respect toṽ, the
minimum value of the deviationd2 becomes

d2512
~( ibici* !2

( i ubi u2( i uci u2
~A10!

for

ṽ5
( ibici*

( i uci u2
, ~A11!

which is the expectation value of the frequency f
ai

(0,p)(T). If the quantityd is very small,ṽ becomes quite
close to the true eigenfrequency. Provided$ai

(0,p)(T)% con-
verges to the eigenfunction$ei(vl)%, d approaches zero, in
dicating thatd2 is an index for the degree of accuracy. Th
one can judge the convergence of the eigenvector from
magnitude ofd. We emphasize that the value ofṽ corre-
sponding to the required eigenvalue, say,vl0 , is calculated
after obtaining the eigenfunction$ai

(0,p)(T)%, which should
be a true eigenvector whend50. This point is different from
the procedure of conventional methods such as the Lan
one, in which the eigenvector is calculated after diagona
ing the matrix. The algorithm mentioned above involves tw
parameters, the time intervalT over which the quantum sys
tem is driven and the number of repetitions times of t
iteration processp, which can be freely chosen. We need
take a large time intervalT with increasing system sizeN due
to the conditionT'4p/DVR . The details of the optimum
choice of these parameters to achieve efficient calculation
given in Ref.@8#. Usually, it is sufficient to takep around 10
as well asDv'DVR54p/T.

The method mentioned above is especially useful for c
culating eigenvalues and their corresponding eigenfrequ
cies within a selected range of eigenfrequency distributi
This is definitely required when computing ac conductiviti
for electron systems treated in Sec. IV. The Lanczos met
is widely used for the diagonalization of large matrice
However, this is usually useful for computing only extreme
few eigenvalues and their eigenvectors, and is not suitabl
calculate those within a selected range of eigenfrequency
tribution and their eigenvectors. We note that eigenfunctio
belonging to very large systems such as aperio
waveguides@23#, fractal networks@24#, and electronic sys-
tems@25# have been accurately and efficiently calculated
the present algorithm.

APPENDIX B

We show that Eq.~25! is equivalent to the Kubo-
Greenwood formula for the longitudinal conductivity. Th
explicit form of Eq.~25! is expressed as,

s~v!5
2

vLd (
vl05vF2v

vF

x9~v!

5
2

v E
EF2\v

EF
dEl0D~El0!x9~v!, ~B1!
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whereD(El0) means the spectral DOS at the eigenene
El05\vl0 . Substituting Eq.~22! into Eq. ~B1!, one has,
taking account ofvl2vl0.0 as explained in the paragrap
below Eq.~12!,

s~v!5
2pe2

\v (
vl

H E
EF2\v

EF
dEl0z^vlu ŷuvl0& z2

3D~El0!d~vl01v2vl!J , ~B2!

where ŷ is the velocity operator. The use of the relatio
ys

A

d

pn
y(l5Ld*D(El)dEl in Eq. ~B2! yields

s~v!5
2pe2Ld

v E dElE
EF2\v

EF
dEl0z^vlu ŷuvl0& z2

3D~El0!D~El!d~El01\v2El!

52pe2\LdE
EF2\v

EF
dEl0

z^vl01vu ŷuvl0& z2

\v

3D~El0!D~El01\v!. ~B3!

This is the Kubo-Greenwood formula@14,16#.
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