PHYSICAL REVIEW E VOLUME 58, NUMBER 3 SEPTEMBER 1998

Computing the Kubo formula for large systems
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A computational method, in which a system is mapped to the time-dependentBgj@oequation driven
by a periodic external force, is formulated for computing linear response functions of quantum systems. This
method, which scales linearly with the system di;eincludes computing the Kubo-Greenwood formula for
the dynamic conductivities of systems described by large-scale Hamiltonian matrices. In addition, a scaling
approach, derived from this algorithm, is presented to determine the exponent of the condugiityw?®
near the metal-insulator quantum transition with high speed and acc{i&i§63-651X98)10709-2

PACS numbgs): 02.70~c, 71.10.Fd, 85.30.Vw, 72.15v

[. INTRODUCTION tional to the system siz&l for calculating the density of
states(DOS) and toN? for extracting eigenvalues and their
Numerical approaches for large-scale systems not acce§igenvectors. The particular advantages of the FOM lie in its
sible by analytic methods have become very useful in recerif€ing easily vectorized and parallelized for implementation
years as the performance of vector and parallel supercompdfﬁ an array-processing modern supercomputer. This is due to
ers has improved. The calculations of linear response fundl'€ fact that the time-consuming part in computations is to
tions are especially important to gain insight into the dy—SOIVe equations of motion and the program is easily opti-

. . ) : ized. It is possible to treat matrices by this method having
namic properties of large-scale systems. Calculations 0?degreeN~1@ or more by using supercomputers with 1-

linear response functions for quantum sygtems describgd bébyte memory spacs)].

N> N H.amlltonlan matrices normaII_y require the evaluation The algorithm has been extended to calculate the response
of all eigenvalues and corresponding eigenvectors. As thg,qions10] and successfully applied to the analysis of
sizes of matrices become large, standard _dlagonallza_tlon rol g ) or the Raman scattering intensltyw) of large-scale
tines require a large amount of the CPU time proportional tQ:IassicaIsystems[ll—l:ﬂ. In this paper we develop the al-

O(N’) as well as memory space proportional @(N?).  gorithm to calculate the linear response functiongudntum
They remain limited to systems of modest size because dystems described by large-scale Hamiltonian matrices. The
the high computational cost. method is broadly applicable and may be of interest in a

So far, many efficient algorithms suitable for the calcula-variety of physical systems.
tion of linear response functions, such as the Kubo- The outline of this paper is as follows. Section Il de-
Greenwood formula for the ac conductivity, have been describes the mapping of quantum systems to first-order differ-
veloped to overcome these difficulties. These includeential equations driven by a periodic external force. The cor-
methods based on the continued fraction technidiethe  responding relationship is given between the imaginary part
recursion method2], the full-diagonalization technique us- of the generalized susceptibility and the “resonance” func-
ing the Lanczos methofB], the Chebyshev polynomial ex- tion gained by a periodic external force with the frequency
pansion[4], the conjugated gradient meth¢8], and the 2. In Sec. I we show thap t.he Kubo-Greenwood formula for
method for direct integration of the time-dependent $ehrothe dynamic(aq) conductivity is related to the resonance
dinger equatiofi6]. These are powerful for computing linear function introduced in Sec. Il. It will be emphasized that the

response functions of large systems and have been applied thod is valid for computing not only the longitudinal con-
various problems. uctivity but also the transverse one. Section IV demon-

Recently, a method often called the forced oscillatorStrates the efficiency of the method by comparing the calcu-

method (FOM), addressing classical systems, has been dégted results with the analytic solution for the system

veloped to efficiently compute spectral densities of statesdescrlbed by large-scale Hamiltonian matrices in addition to

eigenvalues, and their eigenvectors of systems described t§ e calculations of ac conductivities of the three-dimensional

very large matrice$7,8]. The method is based on the prin- D) Andersen model close to the metal-insulator guantum
transition. Section V presents the finite-time scaling ap-

ciple that a linear mechanical system, when driven by a pe ; X .
riodic external force of frequend§, will respond with large proach, derived from this method, to determine the exponent
X h f the ac conductivityr(w)>*w? at the metal-insulator tran-

amplitude in those eigenmodes close to this frequency. T g _ . . .
characteristics of the method are its simplicity, speed, ang'tion- This approach is espeuglly powerful ik
memory efficiency. The advantages compared to existin recise value of the exponekﬁwnh h'gh spged and accu-
methods are thdt) it requires memory space of the order of acy. A summary and discussion are given in Sec. V.

N for sparse matricesii) it is possible to compute the spec-
tral density of states within an arbitrary range of eigenvalues
and with a given resolutiorijii) one can calculate quite ac-
curately the selected eigenvalue and its eigenvector and Consider a quantum system described by a set of matrix
judge the accuracy, ar(d) the CPU time is linearly propor- elementg{K;;}, whose general Hamiltonian is given by

Il. LINEAR RESPONSE FUNCTION
AND RESONANCE FUNCTION
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where (j| is the bra vector in thesite notation given by ©

(j1=(0,0,...,1,...,0). The ket vector is defined as well. Sincevhereej(w,o)=(j|w\o) is thejth element of the initial ei-

the set{]i)} satisfies the closure relatidiy|i){(i|=1, an arbi- genvector belonging to the eigenvalug, of the matrix

trary state is expanded as {Ki;} [see Eq.(6)]. We have used in E(7) the definition
given by

[w()=2 a(oli). 2 a%(t) =g, (wyo)e ' rct

The functionai(cly)(t) is expanded by a set of eigenvectors

We impose a small perturbatid}l to the system expressed {e(w)} as
iloy

by

(1) (1) = e
V=13 % (fle Wt cc), @ a7 ()=2 &he(w), (10

where £7(t) is the amplitude of the mode. From Eq.(8)

whereX, is the @ component of thegeneralizeddisplace- and using the orthogonal condition for eigenvectors
ment andfg is the corresponding generalized force. c.c. in-{ei(w}\)}, one has the equation fgf(t),

dicates a complex conjugate. In the spectral representation,

this is written in the form dea(t) . |
| ()it _w)‘gg(t):_i E e}k(wx)[Fjaef'(‘”onrw)t
i

\“/=§ Ej [V (|

e

=—1> ZJ (lyxa(iD(fge " “H+c.c). (4)

where the closure reIatioEjej(wh)eJ*(w)\,)z Sy Is used.
A Imposing the initial conditiorgy (0)=0, the solution of Eq.
Here we have defined[(t)=(i|V,|j) and x{=(i|X,lj). (11 yields

Substituting Eqgs(1) and (3) into the Schrdinger equation

—iwyt
for |[W(t)) and multiplying by(k| from the left, one has the ga(4)— _ o S e
) . ) : ; &t >, €] (w))
inhomogeneous coupled linear differential equation 2 ]
i(w)—wypg— o)t _ 1 ei(“’}\_w}\0+w)t—1
. da(t) N € *
i dt _Ej: Kijaj(t):; 2 Vii(Day(t). (5) X Fie W) T W\ @ *Fla W\~ o\t '

12
For a small perturbation, the time-dependent first-order per- 12
turbation theory is applicable by putting;(t)=a{®(t) ~ The second term in the square brackets is negligible since we
+Eaafi)(t) into Eq.(5). The zeroth-order equation becomes cpnslder the case of.zero tempgrature and treat the Fermi
distribution function with the Fermi frequeney-=Eg /% as

da®(t) a step function. This implies thab, > wr=w,o, namely,

! -> Kijafo)(t)=0, (6) wy—wyo>0, implying that the contribution from the first

dt ] term close td) = w, o+ w~w, is dominant.

Let us introduce the “resonance” function defined by

in

while the first-order term yields

e Ep(20=2 all(0*aff (=2 &
i - _; Ki,-a}?(t)=§j: vealO (). (7) ' (13

By substituting Eq(12) into Eq.(13), one has

Eag<ﬂ,t>=§ [Ei Fiaenwx)] [2 Fjﬁer(wn]

By substituting Eq.(4) into Eq. (7), one has the first-order
linear differential equation with the periodic external force

dalM(1)
. « _ N (1)
g 2 Kyl Sir?{ (@, — Q)t/2}
X (o—0)7 14
h . . _ A
- _ . —lwt * Aloty a—iwyet
2 (Fio& T+ Fie)e o ® where Q)= w, o+ w. The orthogonality condition for eigen-

vectors{e;(w,)} is used to derive Eq14). The eigenvectors
Here contributing to the sum in Eq14) are those whose frequen-
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cies lie within aboutx (2#/t) of , wheret is the time g*fg A

interval. Suppose that the following conditions are satisfied Eap(Q,t)= “2onZ E (@yolXal @)

according to Ref[7]: A

X {wy|X 5| 0y o) 8(wy— Q). 20
1, (15 (o [Xgl @r0) 0wy — Q) (20)
The generalized susceptibility, z(w) is given by the Kubo

A7 formula[14] under the generalized external force defined in
tho 16 Eq.3),

whereAw is the average spacing between the frequencies of Xaﬁ(“’):flt— fxe“”%[;(a(t),;(ﬁ(o)])dt, (22)

adjacent eigenmodes. The first conditigtb) means that 0

only eigenmodes in a narrow band of frequencies on the
scale ofQ2 contribute to the sum ok in Eq. (14). The second where angular brackets denote the thermal average. The

one (16) ensures that the number of such eigenmodes idnaginary part of the generalized susceptibility for ftheed
much larger than unity. Namely, the number of modes pefnitial state|w, o) is expressed by

frequency internalAw is of the order of 1Aw and so the -

number of modes that are within 27/t of Q is 4w/tAw Xop(@)= = 2 [(@r0l%a] 03 )(@,|X gl 0r0) S @rr0— @)
[7]. The condition(16), which implies that the resonance i X

width AQgr=47=/t should be much larger than the average _ s s
level spacingAw, is easily achieved for a system with a {orolXgl@r)(@r]Xal @r0) o @rrot )], (22
sufficiently large sizeN becausedw for such a system be- \here the definition i), , o= w, — @,o. The second term in
comes very small. For a lardé¢, namely, with a smallw,  the square brackets obviously makes no contribution because

the COI’]ditiOI’]S(lS) and (16) are unified into the relation w)\}\0>0_ By Comparing Eq(22) with the resonance function
E.p(£2,t) given in Eq.(20), one has the relation, by setting
1 4w f@=ff=1 without loss of generalit
—<t<-—. (17 0= To=1 withou g iy,
Q Aw
2RE ,5(Q,1)
. . . . .. " (w):— (23)
This condition requires that there should exist a sufficient ap t :

number of eigenstates within the frequency rageo ()

+AQg. We should note that, for the condition  This relation is the key equation that relates the resonance
>4m/Aw, the resonance factor in E(L4) is so sharp that function E,4({2,t) [Eq. (13)] to the imaginary part of the
the resonance widthAQr is less than the spacinjw. This  generalized susceptibility?, 5(w).

condition fort is used to extract the pure eigenmode of the

initial state expressed 1B((w, o) in Eq.(9) in additiontothe 1. COMPUTING THE KUBO-GREENWOOD FORMULA
optimization conditior[8] (see Appendix A o _ .

Taking a proper time interval satisfying the condition A. Longitudinal dynamic conductivity
(17), Eq. (14) gives This section describes the relationship between the Kubo-

Greenwood formula for the ac conductivity and the reso-
ot * nance function defined in E¢13) via the imaginary part of
Eap(Q,0)=— > {2 Fiaei*(w)\)) the generalized susceptibility, ;(w). A small perturbation
2 X i due to the vector potentiagh(t) to a electronic system is
expressed ad’' = —J-A(t), wherel is the current operator.
* _ Since the conductivity is defined as the response to the elec-
x[; Fig®] (w“)] Aoy —). (19 tric field E(t), the generalized conductivit},s(w) is re-
lated to the generalized susceptibiljy,s(w) by the relation
A straightforward calculation leads to the following repre-Eaﬁ(w)=xa5(w)/ide, wherel is the linear size of al-
sentation, using the expression gy, introduced in Eq(9): dimensional system.
The generalized conductivity is expressed b4

fo ine?
2 Fieel (@)= 2 xjej(wo)e] (o) S op(0)= = Oapt 77

fa o xlim | et (3 (1), 3,0)]hdt, (24)
=23 (il im |, e iom

whereJ,(t) is the @ component of the current operator and
the angular brackets mean the thermal average. The first term
represents the conductivity of a system of free electrons.
From this one can derive tHengitudinal component of the
Substituting Eq(19) into Eq. (18) leads to ac conductivityo(w)=Rd3,(w)] by settinga= g andX,

a

= zo (@)[X ol @)0)- (19
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=J, in Eq. (22). Taking account of the Fermi distribution IV. IMPLEMENTATION OF THE ALGORITHM

function f(w), the Iongnudmal ac conductwn_yar(w) is ex- A. Time development of the resonance function

pressed by the imaginary part of the generalized susceptibil- ) o

ity v"(w) as The problem of calculating the resonance function in Eg.

(23) is reduced to the numerical solution of the first-order
coupled linear differential equations under a periodic exter-

U(w):id > X' (0)[f(wy) —f(wy+ )] nal force expressed by E@8). By dividing the function
wl™ o5 ai(i)(t) in Eq. (8) into a real pari;(t) and an imaginary part
5 op yi(t), one has, in units ok =1,
a2, X @9 dx() 1
dr 2 Kiyih=3 Fisin(Qv), (28)
where the spin freedom is taken into account and the defini-
tion of the Fermi frequency i&g=Eg/%. The meaning of dyi(t) 1
ESEO:wa is the sum on the initial stafe, ) at zero tem- —dlt +2 Kijx;(t) = > F,coq Qt). (29)
i

perature. Equatio(25) can be shown to be equivalent to the
Kubo-Greenwood formul@l4,16] (see Appendix B o
The explicit form of the longitudinal ac conductivity, ex- Heré we have assumed, for simplicity, that the elements

pressed by the resonance function given by Bdg), be- {Kij} and{F;} are real numbers. By discretizing tinevith

comes a stepr, these equations become
4f ok L
U(w):m 2 E(Q,t), (26) Xi(n‘f‘l):Xi(n)‘F; TKijyj(n)‘f'zFiSln(QnT),
w)\o—w,: w (30)
where the timet satisfies the condition V<t<47/Aw.
This is the key relation for evaluating the ac conductivity (Nt =v.(n)— (N4
from the resonance functioB(2,t). We should emphasize yin+1=yi(n ; mKijxj(n+1)
that the accuracy of the calculated results becomes better on
increasing the system si2¢since the average level spacing " T "
Aw becomes smaller than the resonance wikifh,. 2 Ficod (Q(n+1)7], (3Y)
B. Transverse dynamic conductivity wherex;(t) andy;(t) are the real and the imaginary parts of

; , . ; (1) L . . )
It is straightforward to generalize the formula for the lon- t€ith element; ’(t) at timet=nr, in which the integen

gitudinal conductivity Eq. (26)] to the transverse ac conduc- "€Presents the number of time steps. _
tivity or,5(w). The resonance functiodi,z(Q2,t) is related It should be noted that the second and third terms on the

to the imaginary part of the generalized susceptibility"ight-hand side of Eq(31) depend on the number+1 of

" . ; time steps, namely, defined by thetardedfinite-difference
via Eq.(23). The use of Eq923) and(25) gives the
)e(gggggsion f(?r Ehe)transverse vaCS(()nd)UCtiVi(ty )9 form, which is different from the standard Euler method de-

fined by the advanced finite-difference method as used for

2 oF Eqg. (30). The choice in Eq(31) makes the calculation, by
U“ﬁ(w):m E X’;B(w) taking the time stepr satisfying the conditionw ,, 7<2,
ONOTORT @ very efficient and accurate, as discovered by Williams and
4% oF Maris [7].
= 2 Eap(Q,1). (27) We choset ast=4#/AQ g, whereAQy is a given reso-
tL” o= oo lution. This ensures that the number of modes within the

range() to ) +AQg is much larger than unity. The details

The Onsager reciprocal relatiar, z(») = — 0 ,(w) should of the implementation of our algorithm are as follows.
be satisfied in Eq(27) by lettingw— — w andi— —i. This ~ The initial set of vectorgx;(0)} and{y;(0)} to iterate Egs.
comes from the relation for the generalized susceptibilit(30) and (31) is set to be zero(ii) We prepare the initial
Xap(®) = X ga(®@) [15]. statese;(w,o)} belonging to the eigenfrequenay,, by ap-

We have described in this section the method of computplying the FOM described in Ref8], taking a large time
ing the longitudinal and the transverse ac conductivities fointerval satisfying the conditiot>4#/A or, equivalently,
systems described by large-scale Hamiltonian matrices. Thié o> A for Egs.(30) and(31) (see Appendix A (i) By
algorithm enables us to directly calculate conductivitiestaking the time intervat ast=47/AQg (AQr>Aw), we
without making the temporal Fourier transform of the re-calculate the amplitudai(i)(t) under the periodic external
sponse function or calculating all of the intermediate state$orce with the frequency). We can finally obtain the reso-
{ei(wy)} relevant to the formul&22). This allows the calcu- nance function using Eq(13). Note that the frequency
lation of the ac conductivities withD(N) computational resolution can be determined and controlled by the time
steps. interval t.
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FIG. 1. ac conductivitiesr(w) of the 1D tight-binding chain FIG. 2. CPU times on the Ultra-SPARC for various system sizes

with the system siz&= 10 000. The resonance widf{) is taken N Calculations on ac conductivities have been performed for tight-

to beAQg=0.01 in the frequency range=0.02-0.4 in the system  pinding chains with the resonance wid2z=0.01 at the fixed
of units given in the text. The solid line indicates the analytic solu-frequencyw=0.2 in the system of units given in the text.

tion showing thew 2 dependence.

magnitude in frequency. The 2 frequency dependence is
the conventional Drude-like behavior. We emphasize again

In order to assess the efficiency of the algorithm follow-that the local equilibrium is achieved by sufficiently large
ing the procedure described in the preceding subsection, weattering rates due to randomness and excitations such as
consider a 1D tight-binding Hamiltonian wit sites given  phonons in metals, namely, the assumption that local equi-
by librium is valid outside the mean scattering length In the

case of perfect metals, the scattering length becomes larger
H=> aliNil—> t; 1)l (32)  than the system size, resulting in the inapplicability of the
i i Kubo-Greenwood formula.

In order to demonstrate tHe(N) scaling of our method,
where we set;=2 andt; ;.;=1 for hopping terms between ac conductivities have been computed by varying the system
nearest neighbors. The matrix elements for the current operagizeN for the tight-binding chain given by E¢32). In these
tor J=ev are obtained from the Heisenberg equation of mo-calculations, we have taken the same resonance wi€lth
tion asJ; j.1=(j|J|j +1)=Fie/# by taking a lattice spac- =0.01 for the fixed frequency=0.2. Figure 2 shows the
ing a=1. We have calculated the resonance function definegcaling of CPU times with the system siz¢®f 1000, 3000,
by Eq. (13) for this system by setting= 8 under the fixed 10 000, and 30 000, respectively. The linear scalingNtis
boundary condition. We note that for the system consistingevident from these calculated data.
of a regular chain without scattering of waves, the Kubo
formula is not applicable because the system cannot reach
thermal equilibrium. However, though rather artificial, it is
possible to calculate, in a very formal manner, the dynamic We apply the algorithm to the calculation of the ac con-
conductivity of the system both analytically and numerically ductivities of the 3D Anderson model of noninteracting elec-
in order to test the efficiency of the algorithm. trons in a random potential, in which the on-site potential

Figure 1 represents the comparison of numerical result§e;} in Eq. (32) is distributed uniformly betweer W/2 and
(solid circles with the analytic solutior{solid line) for a 1D W/2. The critical widthW is known to beW:=16.5[17—
chain with N=10 000 on a double logarithmic scale. The 19]. The w'”® dependence af(w) at the metal-insulator tran-
system of units used is=#=1. For these calculations, we sition was predicted by Wegndr20] using the single-
have chosen the time step as 27/20Q) and the resonance parameter scaling hypothesis, but this dependence was not
width in Eq. (14) as AQgr=4m/t with t=47X100. This verified numerically until the work by Lambrianides and
means that there are about 25 modes within the resonan&hore[21]. They evaluated the Kubo-Greenwood formula by
width AQg. In order to prepare the initial eigenfunction directly calculating eigenvectors of the order of ¥or sys-
{ei(wyo)} we have performed calculations under the condi-tem sizesL=6-14 and by pulling out of the integral the
tion Aw~AQpg and taken the number of iteratiops=10.  densities of stateB (w, o) andD(w,o+ ). We do not need
This choice of parameters makes the deviadotefined in  to do so to calculate the ac conductivities since the informa-
Appendix A take the valué~10 ‘. The analytic solution tion on the DOS is automatically involved in our algorithm
for this system is given by the solid line, whose explicit form through Eq.(14). We plot the calculated DOS for the system
is omitted here. We see from Fig. 1 that the calculated resultsize N=3O3 in Fig. 3. These data are obtained by setting
agree fairly well with the analytic result over one order of F;=¢'%i in Eq. (8), where ¢, is a random quantity. This is

B. Tight-binding chain

C. Three-dimensional disordered system
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0.20 - - ——— These problems appear in the investigation of quantum phase
transitions, where the problem is how to obtain the precise

0.5 | value of the exponend. We provide in this section an effi-

’ cient method based on the finite-time scaling approach to
~ determine the exponerdt
S o0} 1 The explicit form of the resonance functi@{((2,t) with
A the definitionQ) = w,+ w is given by Eq.(14) as

0.05 |

1 . Sir?{(w, —Q)t/2
000 E(Q,0)=+ f de\D (@))% o)l iws_mz 3
(33

where the density of staté¥(w,) is introduced by the defi-

FIG. 3. Spectral density of states for the 3D Anderson model ofjtion =, =LY d(Aw,)D(w,). We assume that the longi-

noninteracting electrons in a uniformly distributed random potential,, . X .
with W=W, in addition to the regular cas&/=0. The resonance Itudlnal ac conductivityo(w) obeys the power law close to

width is taken a€)g=0.2 for the system siz=30°. The data are the mobility edgew, as
averaged over 10 samples.

o(w)*w’ (39
the same scheme presented by Williams and Mgfisto
calculate the DOS, which is particularly effective when onefor 0<w< wg and that the DOS close 1@, is nearly con-
needs the DOS at an arbitrary frequency range for systemstant in the center of the band as shown in Fig. 3. Note that
described by large-scale Hamiltonian matrices inQ{N) wo= wg for the critical distributionW.=16.5[17-19. Un-
fashion. We consider the case of the critical wilttlz and  der these conditions, E¢33) should be, for a sufficiently
choose the Fermi enerdyr=7% wg in the center of the flat large time intervat,
band (see Fig. 3, for which the mobility edgewy= w.
Figure 4 shows the calculated results for 3D systems with
N=30° on 20 samples with various distributions of random
potential{¢;}. The parameters taken are 47X 100 andr
=27/20Q (or 1.9%wma). From Fig. 4 the exponerd is es-
timated to bes=0.33+0.04 by averaging over 20 samples.
The error is within 12%.

E(Q,t)/tOCJdw)\(w)\—w)\o)‘sb‘(a})\—ﬂ)ocw‘s, (35

where the definition() = w,,+ w is used. For a short time
interval (2 — w,)t<<1, the sinclike function in Eq(33) be-
comes wider than the bandwidth. This yields

V. FINITE-TIME SCALING OF THE ac CONDUCTIVITY

NEAR THE QUANTUM PHASE TRANSITION E(Q,t)/tect ™,

We consider the frequency dependence of the ac condugrom these two extreme cases, the scaling form of the reso-
tivity near the mobility edgewy, in particular, the case in nance function or, equivalently, the ac conductivity becomes,
which the ac conductivityr(w) follows the power-law de-  as in the case of obtaining the exponent of the spectral DOS
pendencen’, where the frequency is measured fromwy.  at the band edge of the J Ising spin-glass model proposed

by Hukushima and Nemoti®22],

1 ] E(w,t)/tect °G(wt), (36)
where the asymptotic form d&(z) should be
8
o 0lp [z, =1
G(2)= const, O<z<1. (37)
0.01}

FIG. 4. ac conductivitiesr(w) for the 3D Anderson model of

0.01

0.1
(O]

We apply this scheme to the 3D Anderson model of non-
interacting electrons in a uniformly distributed random po-
tential studied in Sec. IV. Figure 5 presents the results for
a(w) for the systemW=W, with N=20? taking the time
interval t=47X4n (n=1-8). The corresponding reso-

interacting electrons in a uniformly distributed random potential.N@NCe widths becom&()z=1/4n, wheren ranges from 1 to
The system size ibl=3C%, for which the resonance width is taken 8: We see from Fig. 5 that the calculated results approach an
asAQz=0.01 in the system of units given in the text. The data arew'” dependence with increasing the time intervafigure 6
averaged over 20 samples. The solid line is drawn by a leastlots the scaling functiois(z) (z>1) defined in Eq/(36).
squares fit and each of the error bars is defined as a standard deviBhe ordinate represents the quani@yz) and the abscissa

tion.

depends on the variable The data forn=6-8 collapse
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metal-insulator Anderson transition. This method is espe-

' ' ' cially powerful for evaluating the precise value of the expo-
osl | nent § with high speed and accuracy. Although we have
o . examined only conductivity problems, the present method is
O o g 3 ¢ 8 rather general, so it should be applicable for calculating vari-
02} " .l 1 1 ous types of linear response functions. This issue is espe-
E N cially relevant in quantum systems in a variety of physical
© % o:n=lo o:n=5 contexts.
0.1} moZ e 6]
A 3 o: 1T
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onto a single line over one order of frequency variation. APPENDIX A

From Fig. 5 the exponent is estimated ass=0.337 _ i I
+0.013, namely, the error is within 4%. We emphasize that . This appendlx presents the procedure to extract the initial
the scaling approach presented here has been performed gigenfunction{e;(w,o)} of the unperturbed system belong-
taking a limited number of initial eigenvectofs;(w,o)} and ing to the eigenfrequenay, o, necessary to give the external
by varying the time interval. This enables the computation force defined in Eqc9) following the FOM[7,8]. A quantum
of the precise exponent with significantly less computa- SyStem described by a Hermitian matfiK;;} has a set of
tional effort, in fact, several times faster compared to thefigenfunctionge;(w,)} defined by

effort for evaluating the exponert in Fig. 4. The straight

line is for ', indicating fairly good agreement with the

calculated results. We have demonstrated in this section that or&i(w)) =2 Kijgj(w,), (A1)
the accuracy has been significantly improved by the use of !

the finite-time scaling approach. where we use a system of unitsfof=1. Hereafter we as-

sume all matrix elements described fiy;;} to be real and
VI. CONCLUSIONS symmetric, or, equivalently, all eigenvalues and their eigen-
functions{e;(w,)} to be real numbers. The extension to the

We have proposed a method for computing linear ré~se of complex numbers is straightforward.

sponse functions for quantum systems described by large- The eigenfunctior{e;(w,)} of the unperturbed system is

scale Hamiltonian matrices. The method is based on Sowin%btained by numerically solving the Sclinger equation

the Schrdinger equation numerically in the presence of a . ; . .
generalized external force. This method enables the efficierft .o N Eq.(6) by the following procedure. We impose the

computation of linear response functions W@N) compu- eﬁterlréa:)for%d:iexp(—lm) on each site in Eq. (6). HereF,
tational steps. Simple examples have been considered to con-ou'd b€ chosen as

firm the reliability of the method. We have furthermore pre-

sented the finite-time scaling method for computing the F,=Focog ¢;), (A2)

exponent of the frequency dependensgw)xw® near the
where ¢; is a random quantity taking a value within the

10 rrrr ——r range O<¢;<2m andF, is a constant. Note that this defi-
nition of F; is different from that in Eq(9) for the perturbed
system. We first drive the system for a time interVatinder
the initial condition{a{®)(t=0)=0}, after which the ampli-

S ] tude at the sité becomesa(®Y(t). One sees, using E¢6),
O M that this amplitude can be written as the sum of normal
1r ] modes{e;(w,)} after the time interval,
¢:n=6
o: T
e: 8 0,0 .
N a®M(T)= 22 Fih(Q,0,.T)e(w,)
' 10 100
4 . Q+w)\
FIG. 6. Finite-time scaling functioG(z) introduced in Eq(36). xexpg 2 T (A3)

The data fom=6-8 presented in Fig. 5z&1) are plotted. The
straight line showing the® dependence is only a guide to the eye. where
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We choose the quantit as the deviations?> to be mini-
Fi=2> Figj(wy) mized. By differentiating Eq(A9) with respect tom, the
J (A4)  minimum value of the deviatio@? becomes

sinf{(Q—w))T/2} (Sibic¥)?
h(Q,w,,T)= . (A4) 21— i
» Q=) o=l Zi|bi|“Zilcil (A0
As a next step, the amplitude of the external force in Eqfor
(A2) applied to the sita is replaced by the new external
force FY exp(=iQt) with F(M=al®(T). We drive again S bt
iMivi

the system for the time interval under the new external =117,
force starting with all zero amplitudes. Aftgriterations of Zilcil
this process we have

(A11)

which is the expectation value of the frequency for
al®"’(T). If the quantity 8 is very small,@ becomes quite
_ close to the true eigenfrequency. Provided®”(T)} con-
ai(o’p)(T):(_Z')p; FAhP(Q, 0y, T)ei(w)) verges to the eigenfunctidie,(w,)}, & approaches zero, in-
dicating thats? is an index for the degree of accuracy. Thus
O+ o, one can judge the convergence of the eigenvector from the
xex;{ —i— IOT)- (A5)  magnitude ofs. We emphasize that the value &f corre-
sponding to the required eigenvalue, sayy, is calculated

This equation indicates that one madgclose to() is domi- ~ after obtaining the eigenfunctio{a_i(o'p’('.r)}., which should
nantly excited after a sufficient number of iterations. This isP€ @ true eigenvector whef=0. This point is different from
the mode for which the absolute magnitude of thienction  the procedure of conventional methods such as the Lanczos

in Eq. (A4) has the largest value. Thus, for a sufficiently ©n€, in which the eigenvector is calculated after diagonaliz-
largep of around 10, we obtain ing the matrix. The algorithm mentioned above involves two

parameters, the time interv@lover which the quantum sys-
tem is driven and the number of repetitions times of the
al%?(T)=Ce(w, )exp —ipw, T), (A)  iteration procesp, which can be freely chosen. We need to
! ! take a large time interval with increasing system si2¢ due

whereC is a constant. In actual calculations, we discretizeto the conditionT~4/A(. The details of the optimum
. : ’ . ' . choice of these parameters to achieve efficient calculations is
time t with a stepnr and drive Eqs(30) and (31) with the P

iven in Ref.[8]. Usually, it is sufficient to tak@ around 10
external forcer (Pexp(—iQt). Note that we use the modified eg15 well asAaL]AQR:Xw/T. P

Euler method defined by the retarded finite-difference form  the method mentioned above is especially useful for cal-

in Eq. (31), which makes the calculations very efficient and ¢jating eigenvalues and their corresponding eigenfrequen-
accurate, as found by Williams and Mafig. _cies within a selected range of eigenfrequency distribution.
In order to estimate the monochromaticity of the exitedry;s is definitely required when computing ac conductivities
mode in Eq(A6) we introduce the quantity; [8] defined by  ¢or electron systems treated in Sec. IV. The Lanczos method
is widely used for the diagonalization of large matrices.
However, this is usually useful for computing only extremely
few eigenvalues and their eigenvectors, and is not suitable to
calculate those within a selected range of eigenfrequency dis-
tribution and their eigenvectors. We note that eigenfunctions
belonging to very large systems such as aperiodic
waveguided 23], fractal networkg24], and electronic sys-
b=, Kijaj(o'p)(T), ci=al%"(T). (A8)  tems[25] have bgen accurately and efficiently calculated by
i the present algorithm.

5i:bi_Z)Ci , (A?)

wherei denotes the site and

We see from Eq(A7) that if a{°")(T) is equal to the eigen- APPENDIX B
functione;(w,) ando= w, , §; vanishes for any. When the
excited pattern{a{®?(T)} consists of a few modes with
eigenfrequencies close to the external frequefigys, be-
comes small but finite.

The normalized sum of the deviatioff defined below oF

expresses the degree of convergel&e o(w)= — E Y'(@)

w)\o=a),:7w

We show that Eq.(25) is equivalent to the Kubo-
Greenwood formula for the longitudinal conductivity. The
explicit form of Eq.(25) is expressed as,

N

2= (A9) 2T dEDEIN@, 6D
Zilby|*” @ JBeho

Nl
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where D(E,,) means the spectral DOS at the eigenenergye, =L%/D(E,)dE, in Eq. (B2) yields
E,o=fw,o. Substituting Eq.(22) into Eq. (B1), one has,
taking account ofv, — w, >0 as explained in the paragraph

2me?Ld E .
below Eq.(12), o(w)= 2 J dE, J " dE oyt
w Er—fo
2me? Er R XD(E,0)D(Ey))8(Eyg+iw—E,)
o(w)= P > [f dEyol{ x| V] w0} ? " " " )\A
2N Er—To d Er |<w)\o+w|v|w)\0>|2
=277e2hLJ dE,,
Er—fo fiw
X D(Eyg) 8 @yo+ ©— , B2
(Exo)d(erot @ ‘*’x)] (B2) X D(Eyo)D(Epo+#iw). (B3)

where v is the velocity operator. The use of the relation This is the Kubo-Greenwood formul[d4,16.
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